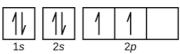
Chemistry Study Materials for Class 11 (NCERT Based Notes of Chapter- 04) Ganesh Kumar Date:- 08/10/2020

CHEMICAL BONDING AND MOLECULAR STRUCTURE

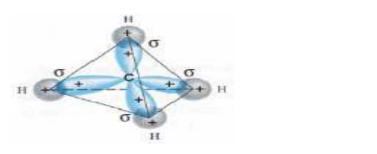
Types of hybridisation


 sp³ hybridisation: It is the process of inter mixing of one s-orbital and three p-orbitals to form four new orbitals having equivalent energy and shape. The 4 new orbitals formed are called sp³ hybrid orbitals. They are directed to the four corners of a regular tetrahedron with bond angle 109⁰28¹.

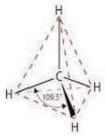
Each sp³ hybrid orbitals has 25% s-character and 75% p- character.

e.g. i) . Formation of methane (CH4)

In CH₄, the central atom C has the electronic configuration


$$_{6}C - 1s^{2}2s^{2}2p_{x}^{1}2p_{y}^{1}$$

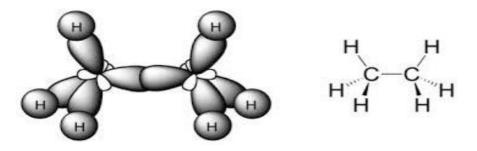
C (ground state) –

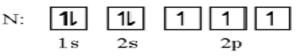


In order to explain the tetra valency of C, it is suggested that one of the electrons of 2s orbital is promoted

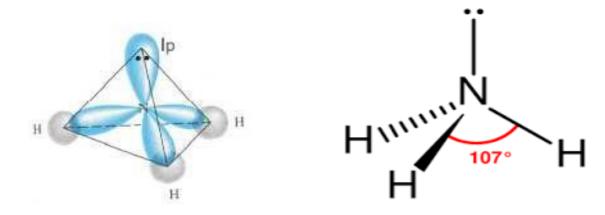
$$_{6}C - 1s^{2}2s^{1}2p_{x}^{1}2p_{y}^{1}2p_{z}^{1}$$

C (excited state) - $1s^{2s}$ $2s^{2p}$


Now, one s-orbital and three p orbitals undergo sp³ hybridisation. These sp³ hybrid orbitals are directed to the four corners of a regular tetrahedron with bond angle $109^{0}28^{1}$. each of these sp³ hybrid orbitals overlap with 1s orbital of H to form four C-H σ bonds.

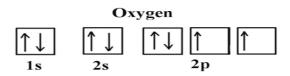

ii)Formation of ethane (C₂H₆)

In ethane, each C atom undergoes sp³ hybridisation. Out of the 4 sp³ hybrid orbitals, one of each C- atom overlaps axially to form a C-C σ - bond. The remaining 3 sp³ hybrid orbitals of each C - atom overlap with 1s orbital of H - atom to form 6 C-H σ - bonds.

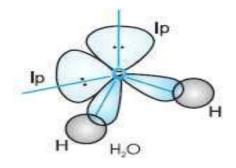


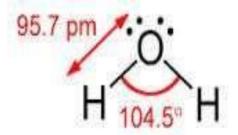
iii)Formation of Ammonia (NH3) molecule

In NH₃, the central atom N has the electronic configuration $_7N - 1s^22s^22p_x^{1}2p_y^{1}2p_z^{1}$



The one s-orbital and three p-orbitals of N undergo sp³ hybridisation to form 4 sp³ hybrid orbitals. One of this sp³ hybrid orbitals is occupied by a lone pair and the other three sp³ hybrid orbitals overlap with 1s orbital of hydrogen to form 3 N-H bonds. Due to the greater repulsion between lone pair and bond pairs, the shape is distorted **to pyramidal** and the bond angle becomes **107**⁰.




Iv) Formation of water (H₂O) molecule

In H₂O, the central atom O has the electronic configuration ${}_{8}O - 1s^2 2s^1 2p_x{}^2 2p_y{}^1 2p_z{}^1$

Now the one s-orbital and three p-orbitals of O undergo sp^3 hybridisation to form 4 sp^3 hybrid orbitals. Two of these sp^3 hybrid orbitals are occupied by lone pairs and the other two sp^3 hybrid orbitals overlap with 1s orbital of hydrogen to form 2 O-H bonds. Due to the greater repulsion between lone pairs, the shape is distorted to angular shape or bent structure or inverted 'v' shape and the bond angle becomes 104.5^0 .
